Descriptif des activités de recherche


I am developing a multi-fidelity modeling approach for the electrode manufacturing process of lithium ion battery cells. For this purpose I combine particle dynamics, discrete element, finite element, and machine learning. This models are obtained with softwares, like LAMMPS, and calibrated, trained, and validated with experimental data.

Parcours


Expertise


  • Particle dynamics
  • Discrete element
  • Molecular dynamics
  • Machine learning

Implication dans des projets


  • European DIGICELL project

Dernières publications


Publications

Surrogate Modeling of Lithium-Ion Battery Electrode Manufacturing by Combining Physics-Based Simulation and Deep Learning

Utkarsh Vijay, Francisco Fernandez, Siwar Ben Hadj Ali, Mark Asch, Alejandro A. Franco
Batteries & Supercaps, 2025

3D Resolved Computational Modeling to Simulate the Electrolyte Wetting of a Lithium-Ion Battery Cell with 18650 Format

Emmanuel Yerumoh, Imelda Cardenas-Sierra, Francisco Fernandez, Alejandro A. Franco
Batteries & Supercaps, 2025

A microstructure-resolved model of sodium-ion battery hard carbon electrodes

Imelda Cardenas-Sierra, Francisco Fernandez, Martin Petit, Alejandro A. Franco
Journal of Power Sources, 2025

Digital correlation analysis and optimization of microporous layer through a machine learning workflow for PEMFC applications

Rashen Lou Omongos, Diego E. Galvez-Aranda, Francisco Fernandez, András Vernes, Alejandro A. Franco
Journal of Power Sources, 2025

» Voir toutes les publications